
REVERSE 

ENGINEERING –

CLASS 0X04

Cristian Rusu

DYNAMIC ANALYSIS



LAST TIME

• static analysis

• ELF

• PE

• IDA

.



TODAY

• dynamic analysis

• debugging

.



FROM SOURCE CODE TO EXECUTION

https://slideplayer.com/slide/4695781/

today, we focus 

here



• why isn’t static analysis enough?

.

WHY DO DYNAMIC ANALYSIS?



• why isn’t static analysis enough?

• dynamic analysis can complement static analysis (in practice, 

most likely, you will need to do both)

• can detect subtle vulnerabilities

• can detect new vulnerabilities

• a new variable is added, time

• can understand what the binary is doing when communicating

• IPC

• direct access

.

WHY DO DYNAMIC ANALYSIS?



• why isn’t static analysis enough?

• dynamic analysis can complement static analysis (in practice, 

most likely, you will need to do both)

• can detect subtle vulnerabilities

• can detect new vulnerabilities

• a new variable is added, time

• can understand what the binary is doing when communicating

• IPC (shared memory, pipes, sockets, messages queues, mutex)

• direct access (debugging)

.

WHY DO DYNAMIC ANALYSIS?



• side-channel attacks

• in computer security, a side-channel attack is any attack based on 

extra information that can be gathered because of the 

fundamental way a computer protocol or algorithm is 

implemented, rather than flaws in the design of the protocol or 

algorithm itself

• cache attacks

• timing attacks

• power-monitoring attacks

• etc.

https://en.wikipedia.org/wiki/Side-channel_attack

DYNAMIC ANALYSIS EXAMPLE 1



• side-channel attacks

• in computer security, a side-channel attack is any attack based on 

extra information that can be gathered because of the 

fundamental way a computer protocol or algorithm is 

implemented, rather than flaws in the design of the protocol or 

algorithm itself

• cache attacks

• Meltdown, spectre

https://en.wikipedia.org/wiki/Side-channel_attack

DYNAMIC ANALYSIS EXAMPLE 1



• side-channel attacks

• in computer security, a side-channel attack is any attack based on 

extra information that can be gathered because of the 

fundamental way a computer protocol or algorithm is 

implemented, rather than flaws in the design of the protocol or 

algorithm itself

• timing attacks

https://en.wikipedia.org/wiki/Side-channel_attack

DYNAMIC ANALYSIS EXAMPLE 1



• compiler eliminates security measures

• https://godbolt.org/z/QMZxYe

• https://godbolt.org/z/3EyZXQ

• same code, but with and without optimization flags

.

DYNAMIC ANALYSIS EXAMPLE 2

https://godbolt.org/z/QMZxYe
https://godbolt.org/z/3EyZXQ


• OS kernel

• reads the binary

• provides a separate address space for the process

• randomization can happen here

• provides expandable stack and heap spaces

• passes control to the interpreter (loader)

• parses the structure of the binary

• copies segments into memory

• sets appropriate permissions for each segment

• checks for any linked libraries

• passes control to the _start address written in the header

.

RUNNING A PROCESS



.

LINUX, STATIC BINARY/EXECUTABLE



.

LINUX, DYNAMIC BINARY/EXECUTABLE



.

WINDOWS ADDRESS SPACE LAYOUT



• ptrace syscalls

• you attach to a process (tracee): gdb –p PID

• read/write memory of the tracee

• read/write CPU registers from tracee

• single step (one CPU instruction at a time)

• start/stop/continue execution

• handle breakpoints

• gdb + peda

https://github.com/longld/peda

LINUX, DEBUGGING METHODS



• special syscalls

• attach to a process (OpenProcess)

• read/write memory from tracee 

(ReadProcessMemory/WriteProcessMemory)

• read/write CPU registers from tracee (GetThreadContext)

• start/stop/continue execution (DebugBreakProcess)

• handle breakpoints (WaitForDebugEvent/ContinueDebugEvent)

• X64dbg and Windbg

https://x64dbg.com/

https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools

WINDOWS, DEBUGGING METHODS



• interrupt (break) execution at a certain point in the code

• inspect/modify virtual memory state/contents

• inspect/modify CPU registers

• analyze the call stack

.

DEBUGGING FOR RE



WHAT WE DID TODAY

• dynamic analysis

• debugging

.



NEXT TIME ...

• more on loading binaries

• obfuscation of binaries

.



• GDB, https://www.youtube.com/watch?v=bWH-nL7v5F4

• Windows debugging, https://www.youtube.com/watch?v=2rGS5fYGtJ4

• WinDBG, https://www.youtube.com/watch?v=QuFJpH3My7A

• Read a bluescreen using WinDBG,
https://www.youtube.com/watch?v=wUh592phlnQ

.

REFERENCES

https://www.youtube.com/watch?v=bWH-nL7v5F4
https://www.youtube.com/watch?v=2rGS5fYGtJ4
https://www.youtube.com/watch?v=QuFJpH3My7A
https://www.youtube.com/watch?v=wUh592phlnQ


.


	Slide 1: Reverse Engineering – Class 0x04 
	Slide 2: Last time
	Slide 3: today
	Slide 4: From source code to execution
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: What we did today
	Slide 20: Next time ...
	Slide 21: references
	Slide 22

